
THE MAGAZINE OF USENIX & SAGE
December 2000 • volume 25 • number 8

{

#
inside:
SECURITY:

A NOTE ON SECURITY

DISCLOSURES

The Advanced Computing Systems Association &

The System Administrators Guild

&

In recent months, a handful of outspoken security professionals have begun

to openly challenge the philosophy of full disclosure. For years, most of us in

the security community have held this philosophy as a basic tenet of vulner-

ability management. Software vendors have a notoriously bad track record

in handling bugs and vulnerabilities in their products. Rather than practice

due diligence and handle the incident swiftly and openly, vendors have not

given these matters the attention they deserve. Open communication

between security consultants or hackers who find these vulnerabilities and

the vendors they report to is more of a myth than anything, despite what

the vendors would like you to believe. Because of this, full disclosure has

kicked in, causing security types to release all of the details to public forums.

In some cases, they include working exploit code as proof of concept, to

“gently” prod the vendor into dealing with the vulnerability in short order.

There are essentially three levels of disclosure with regard to security-vulnerability
information seen today:

1. General information indicating a vulnerability in a specific software package or
operating system. Often the information is extremely vague and not adequate for
administrators to fix the problem themselves. Advisories from CERT and similar
outfits fit in this category.

2. Full technical information, often in the form of an advisory. Technical details
enable security personnel to understand the problem fully and often fix it without
any additional information. No exploit code or “proof-of-concept” code is includ-
ed. Security firms and consultants typically release in this fashion.

3. Working exploit code. This is sometimes accompanied by a technical advisory
explaining the vulnerability in depth. Other times it may only include a few notes
in comments at the top of the program.

The recent argument suggests that including exploit code while disclosing vulnerabili-
ties has a downside that severely outweighs any upside. The perceived upside is that by
including working exploit code, vendors are forced to respond to the issue quickly, lest
thousands of their customers remain vulnerable to the new exploit. While this indeed
puts extra pressure on the vendors to fix the problem, it potentially leaves thousands of
systems exploitable afterward. While software patches are available, there is nothing
forcing administrators to install them to negate the problem. At this point, full disclo-
sure becomes a two-edged sword.

The downside to all of this is that these exploit scripts and utilities are available to any-
one with a shred of computer know-how, who now has the capability of breaking into
foreign systems. This in turn leads to the “script kiddie” phenomenon: large numbers of
mostly unskilled wannabe hackers use the tools to break into (and often deface the Web
pages of) systems around the Internet.

Much to the joy of some of these outspoken security professionals, there exists hard
data to back their claims. For months, they have been making these claims with no real
backing to support their arguments. As with any person making claims with no proof,
it is often easier to discount their words as a bit fanatical, especially when their tone is
elitist and condescending. Using data collected by Attrition (<http://attrition.org>)
along with BugTraq archives at Security Focus (<http://securityfocus.com>), several

43December 2000 ;login: SECURITY DISCLOSURES ●

by Brian Martin

Brian Martin is a
Senior Security Engi-
neer with the DSIC
Network Security-
Group. His team pro-
vides penetration
assessment and audit
for the commercial
and government sec-
tors.

<bmartin@attrition.org>

a note on security
disclosures

●

SE

C
U

RI
TY

| P
RO

G
RA

M
M

IN
G

| O
VE

RV
IE

W

http://attrition.org
http://securityfocus.com

cases have clearly emerged that demonstrate the cause and effect between exploit-code
release and Web-page defacement.

Before examining this data, several things should be considered. This is not the silver
bullet killing any and all doubt you may have had in the outspokens. Rather, this is data
that proves one piece of the puzzle. As with all things, this is not a black-and-white
issue. Other issues must be considered in addition to the ideas presented above.

Several cases stand out in the past two years that demonstrate the downside to releasing
exploit code. Listed below are eight vulnerabilities that allow an intruder to gain some
form of elevated privileges remotely. Included with each is the approximate date exploit
code was made public, along with other thoughts or comments.

“std1” – automountd/statd remote buffer
overflow (UNIX) Jan 4, 1999
<http://www.securityfocus.com/archive/1/11788>.
Shortly after public disclosure, there was a
small spike in defacements per day. In the fol-
lowing months, an incredible growth began.

“cf” – Cold Fusion l0pht advisory w/exploit
code (NT) Apr 20, 1999
<http://www.securityfocus.com/archive/1/13377>.
Other problems in the Cold Fusion package
came to light in Phrack 54 (Dec 25, 1998), but
did not include detailed exploit information.
Based on the graph, it seems the release of the
CF exploit resulted in more defacements per
day.

“iis” – IIS Hack eEye advisory (NT) Jun 16,
1999 <http://www.eeye.com/html/Advisories/AD19990608-3.html>

and <http://www.securityfocus.com/archive/1/15448>.

“msadc” – RDS/MSADC RFP advisory (NT)
Jun 23, 1999
<http://www.wiretrip.net/rfp/p/doc.asp?id=1&iface=2>.
The combination of IIS Hack and the MSADC

exploit being released at approximately the same time led to two small spikes. Because
of difficulty in getting the exploit code to work early on, it is believed that the incredi-
ble spike in the following months was more indicative of the exploits being public.
During this time, a large percentage of defacements mirrored by Attrition appeared to
be NT-based and mostly a result of the MSADC vulnerability.

“wu1” - wuftpd 2.5 remote buffer overflow (UNIX) Nov 20, 1999
<http://www.securityfocus.com/archive/1/35828>. While the average number of deface-
ments per day dropped steadily shortly before and after its release, there was another
noticeable spike shortly afterward. Once again, it is believed that the delay was caused
by initial problems in using the first versions of the exploit code. In the weeks after its
release, more versions of the exploit came out, increasing the chances of successful
exploitation on a remote host.

“wu2” – wuftpd 2.6* remote buffer overflow (UNIX) Jun 23, 2000
<http://www.securityfocus.com/archive/1/66367>. As seen before, a small increase can be

44 Vol. 25, No. 8 ;login:

Vulnerabilities, November 1, 1998 - September 30, 2000
Note: Horizontal lines are the average defacements per day 14 days before and

28 days after vulnerability became “public” knowledge.

http://www.securityfocus.com/archive/1/11788
http://www.securityfocus.com/archive/1/13377
http://www.eeye.com/html/Advisories/AD19990608-3.html
http://www.securityfocus.com/archive/1/15448
http://www.wiretrip.net/rfp/p/doc.asp?id=1&iface=2
http://www.securityfocus.com/archive/1/35828
http://www.securityfocus.com/archive/1/66367

seen before and after the release of the exploit code. Running into the approximate
release of “std2,” the upward growth became even more noticeable.

“std2” – statd remote buffer overflow (UNIX) Jul 16, 2000
<http://www.securityfocus.com/archive/1/70306>.

“phpn” - PHP-Nuke news site administration Aug 21, 2000
<http://packetstorm.securify.com/0008-exploits/PHP-Nuke.c>. Once again, a noticeable
spike shortly after disclosure of the exploit information. During this time, a large per-
centage of defacements reported to Attrition were a result of this exploit. Because the
attackers could post custom messages to a news application and not replace the entire
page’s content, it was rather easy to identify which defacements were a direct result of
this vulnerability.

While these eight examples are fairly clear, it should be noted that with the disclosure
of any remote exploit code, defacements tend to increase shortly afterward. Depending
on the operating systems affected, ease of use of the exploit, and availability of vulnera-
ble machines, the numbers do not always shift so dramatically. Working with the Attri-
tion mirror on a daily basis makes one more aware of this trend.

A key part of the definition of “script kiddie” is the lack of technical skill s/he possesses.
It is widely believed that most script kiddies use Windows machines and favor exploita-
tion of Windows NT servers. In the cases where a UNIX-based exploit is simple enough
to use (easy to compile, simple command-line
arguments, etc.), script kiddies will shift from
exploiting Windows machines and begin to
attack UNIX systems. The best example of this
can be seen in the recent “wu2” (wuftpd 2.6)
and “std2” (statd) vulnerabilities. Not only did
significant spikes occur shortly after public
disclosure of exploit code, but a radical shift in
the overall number of Windows and UNIX
operating systems being defaced occurred.

Despite a steady increase in Windows NT
defacements for the last year, NT systems were
defaced less often shortly after the two UNIX
exploits were released. In keeping with this,
Linux (exploit code for wu2/std2 was written
to exploit Linux primarily) defacements
climbed dramatically. Defacement groups that
had previously been dominant on Windows
platforms suddenly began to deface more and
more Linux machines.

While the data points to a conclusion that
publicizing exploit scripts is harmful to the
Internet community, that may not necessarily be the case. Because Web-page deface-
ment is a public event and a strong motivation of many script kiddies, it provides a
method to extract data to show the trends and statistics above. However, one must con-
sider the sequence of events and results of exploits being created but not being posted
to a public forum.

45December 2000 ;login:

Operating Systems, June 1, 2000 – October 1, 2000
(Top Line – Windows NT, Middle Line – Linux, Bottom Line – All other OSs)

SECURITY DISCLOSURES ●

●

SE

C
U

RI
TY

| P
RO

G
RA

M
M

IN
G

| O
VE

RV
IE

W

http://www.securityfocus.com/archive/1/70306
http://packetstorm.securify.com/0008-exploits/PHP-Nuke.c

Unpublished exploit scripts are like currency in the hacker subculture. The power of a
single remote exploit that is unknown to vendors enables a single person to potentially
break into thousands of machines, often with no recognizable trace of how it was done.
Many intrusion-detection systems will not recognize the fingerprints of these new
exploits. The hackers who hold these scripts typically do not deface Web pages or per-
form any action that would draw undue attention to themselves. To do so would bring
more attention to their actions and create a better chance that someone would figure
out how they are compromising machines and what the new vulnerability is.

In some cases, these exploits circulate in the underground for up to a year before being
made public. If even a dozen hackers have such an exploit while actively using it over a
one year period, the damage becomes negligible compared to a few dozen Web deface-
ments that occur as a result of an exploit being made public. While it is unfortunate to
see a site hacked as a result of the public disclosure of a vulnerability, it really becomes
one of the necessary evils in doing so. One has to balance the sites being hacked in one
hand versus a vendor patch that will allow thousands of sites to be protected against the
exploit.

As I wrote this article, I had constant reminders of everything covered above. No fewer
than 20 defacements occurred in the process of writing this. No doubt some occurred
as a result of exploit scripts being made public, fueling the script kiddies. Equally so,
some of these probably occurred from classical attacks such as password guessing, snif-
fers, or nonpublic exploits that haven’t crossed BugTraq yet. Is releasing exploit code as
evil as some are now saying? I think that is answered by which side of the sword you’d
rather be cut with.

[Editor’s Note: My home systems were penetrated within two hours of the Kerberos exploit
being published. I think it was the first BSDI had heard of it. Even having the fix within
four hours wasn’t enough to prevent the exploit. RK]

46 Vol. 25, No. 8 ;login:

No fewer than 20

defacements occurred in the

process of writing this article.

